数学之美读后感8篇

时间:
loser
分享
下载本文

通过写读后感,我更深刻地理解了书中的主题和含义,写读后感是一个思考的过程,通过它我们可以培养自己的批判性思维,提高问题解决能力,吾优心得网小编今天就为您带来了数学之美读后感8篇,相信一定会对你有所帮助。

数学之美读后感8篇

数学之美读后感篇1

看完《浪潮之巅》,了解了硅谷很多公司尤其是互联网公司的沉浮,对吴军的书就非常感兴趣,看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:

1、在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?

2、搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词。

3、搜索引擎是如何工作的—网络爬虫是怎么回事儿

4、pagerank是怎么回事?为了解决什么问题?

5、密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下。

6、拼音输入法的数学模型。

7、文本自动分类的模型。

看完之后最大的感受就是:

1、数学模型巨大作用,推动着新技术的发展。

2、攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉。

3、书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了。

数学之美读后感篇2

确切的来说,《数学之美》并不是一本书,它是谷歌黑板报中的一系列文章,介绍数学在信息检索和自然语言处理中的主导作用和奇妙应用,每一篇文章都不长,但小中见大,从看似高深的高科技中用通俗易懂的案例展示了数学之美,深深的吸引了我。

这一系列文章的作者是google公司的科学家吴军。他毕业于清华大学计算机系(本科)和电子工程系(硕士),并于1993—1996年在清华任讲师。他于1996年起在美国约翰霍普金斯大学攻读博士,并于xx年获得计算机科学博士学位。在清华和约翰霍普金斯大学期间,吴军博士致力于语音识别、自然语言处理,特别是统计语言模型的研究。他曾获得1995年的全国人机语音智能接口会议的最佳论文奖和20xx年eurospeech的最佳论文奖。

吴军博士于20xx年加入google公司,现任google研究院资深研究员。到google不久,他和三个同事们开创了网络搜索反作弊的研究领域,并因此获得工程奖。20xx年,他和两个同事共同成立了中日韩文搜索部门。吴军博士是当前google中日韩文搜索算法的主要设计者。在google其间,他领导了许多研发项目,包括许多与中文相关的产品和自然语言处理的项目,并得到了公司首席执行官埃里克。施密特的高度评价。吴军博士在国内外发表过数十篇论文并获得和申请了近十项美国和国际专利。他于xx年起,当选为约翰霍普金斯大学计算机系董事会董事。

正是他在信息检索与自然语言处理领域中的一系列工作,使他讲述了我所看到的内容—数学之美。

看了数学之美,立即联想到了金庸小说中的武林高人,总是把一套大多数人都会的入门功夫使得威力无比,击溃众多敌者。东西放在那,它的威力如何,并键在于使用者,武术如此,数学同样如此。

于我而言,语音视别是一类高科技,作为非专业人土,深觉高奥。但看完数学之美之后,顿感惊诧,原来如此深奥东西的解决方法自己也学过,并且理工科读过大学的人都学过,那就是统计学中的条件概率p(a/b),即b事件发生条件下a事件发生的概率。

如果s表示一连串特定顺序排列的词w1,w2,…,wn,换句话说,s可以表示某一个由一连串特定顺序排练的词而组成的一个有意义的句子。现在,机器对语言的识别从某种角度来说,就是想知道s在文本中出现的可能性,也就是数学上所说的s的概率用p(s)来表示。利用条件概率的公式,s这个序列出现的概率等于每一个词出现的概率相乘,于是p(s)可展开为:

p(s)=p(w1)p(w2|w1)p(w3|w1w2)…p(wn|w1w2…wn—1)

其中p(w1)表示第一个词w1出现的概率;p(w2|w1)是在已知第一个词的前提下,第二个词出现的概率;以次类推。不难看出,到了词wn,它的出现概率取决于它前面所有词。从计算上来看,各种可能性太多,无法实现。因此我们假定任意一个词wi的出现概率只同它前面的词wi—1有关(即马尔可夫假设),于是问题就变得很简单了。现在,s出现的概率就变为:

p(s)=p(w1)p(w2|w1)p(w3|w2)…p(wi|wi—1)…

(当然,也可以假设一个词又前面n—1个词决定,模型稍微复杂些。)

接下来的问题就是如何估计p(wi|wi—1)。现在有了大量机读文本后,这个问题变得很简单,只要数一数这对词(wi—1,wi)在统计的文本中出现了多少次,以及wi—1本身在同样的文本中前后相邻出现了多少次,然后用两个数一除就可以了,p(wi|wi—1)=p(wi—1,wi)/p(wi—1)。

也许很多人不相信用这么简单的数学模型能解决复杂的语音识别、机器翻译等问题。其实不光是常人,就连很多语言学家都曾质疑过这种方法的有效性,但事实证明,统计语言模型比任何已知的借助某种规则的解决方法都有效。比如在google的中英文自动翻译中,用的最重要的就是这个统计语言模型。去年美国标准局(nist)对所有的机器翻译系统进行了评测,google的系统是不仅是全世界最好的,而且高出所有基于规则的系统很多。

这就是数学的美妙之处了,它把一些复杂的问题变得如此的简单。

看到《数学之美》,在感叹数学的美妙与神奇之处时,自然而然联系到自己专业(地质工程而或岩土工程)中的数学应用。

现在找文献,搜索期刊一大堆基于数学的专业文献,灰色数学的、模糊数学的、非线性的、系统的,等等,这么多的数学的使用,促进了一大批的文章,但这些数学方法的应用究竟是发现了哪些问题?还是解决了实际问题吗?还是仅发了文章,满足了需求?现实是文章好发,用着难用,解决问题还得传统的方法,那么是这些数学方法不行,还是用的太肤浅,根本没发挥其威力来?如果没有发挥出威力来,那怎么用?怎么发挥?

数学之美读后感篇3

这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。

第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码—传输—解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。

第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。

这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。

简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。

作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的主要根源。

罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美"。在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。

吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余"。回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。

数学之美读后感篇4

如果要评选最令人痛恨的科目,估计非数学莫属了。

人类花了几百年时间才形成了现代数学完备的理论体系,结果却要求我们在3-5年里全部学完。这显然是要杯具的。也显然是除了背公式就没有其他办法的。

数学,小学的时候全是数字,初中的时候加入了xy,高中的时候基本没数字了,大学高数不但数字少,而且各种符号满天飞。

其实想想就明白了,古时候的人们真的是闲的才去研究数学的吗?明显是在工程工作和实际生活中遇到了难题,需要数学这个科学的皇后来解决,于是人们才去研究的数学啊。数学是与应用分不开的啊。为什么在学习的过程中,却被生生剥离了实际呢?《数学之美》里面的一句话提醒了我,几乎所有的科学家都是数学家,但是很少有数学家同时是语言学家。

会做事而不会讲事的人,编写了我们的教材。

如果《数学之美》的作者吴军执笔重写我们的数学教科书,说不定中国会出现更多的数学家。

由于每个月都买1-2百的书,对什么是好书,我现在心里是越来越有底了。其实标准很简单,能不罗嗦的把事情给讲清楚了,就是好书。从这个标准出发,我杯具的发现,国内的教科书极少有满足这个简单的标准的。大部分是生搬硬套,大杂烩一锅炖。

本着事情要讲清楚的原则,现在的数学教科书,就应该把课后习题给详解。把公式隐含的条件反复的强调,而不是像躲猫猫一样找死不见,解体的时候应该循序渐进,适量更新,而不是几十年不变。那些公式什么的,你多解释几遍,多用文字讲解一下,多写点有用的中文,少推导些万年不用的公式,少写点“容易得出”“易推导出”无用的文字,增加一下让教科书的可读性,行不行?别整的公式套公式,显得你编书的人很牛逼似地,其实你就是一心虚的。心虚怕讲得多错的多,被人质疑你的权威性,逼就是有错不改,强卖垃圾,编的这么烂,如果不是指定教材,放到市场上有人买才怪。最恶心的还垄断,还不给别人编。

?数学之美》是把数学怎么简单,怎么好理解就怎么讲。

教科书是公式一摆,撒手不管,习题雷同例题,与实际脱节,任外面山洪海啸,我自岿然不动。

中国的教科书啊,学一下国外的吧。北大出版社翻译出版的《经济学原理》虽然是教科书,但是凡是对经济有一丁点兴趣的人,都会对这套书称赞不已。这才是教科书应有的样子啊。

数学之美读后感篇5

我在想,为什么我们要学习数学?也许这个问题成年人有一万个答案,可是当我们第一次走进教室,学习数学的时候,大概率还是个孩子,你怎么跟一个孩子解释为什么要学习数学呢?我把这个问题抛给了一个朋友,他说:“为了提高思维逻辑能力,这是我初中老师在第一节数学课上告诉我们的”。或者一位5岁的小朋友又会问:“什么是逻辑能力呢?”

也许从出生第一天,我们就一直在被动的接收一些东西,父母的劝导,老师的传授,可5岁的孩子还是会把玩具散落一地,6岁的孩子仍然会因为父母不给买玩具而嗷嗷大哭,无论你怎么劝导一个人,怎么劝诫一个人,他可能仍然会犯你认为会出现的错误。我记得有位教育专家这么说:“你告诉宝宝他把玩具弄坏了,就等于丢了10个棒棒糖”,从此以后这个宝宝可能会更加珍惜玩具。这个方法很简单,但是貌似最有效。数学是什么?数学不就是把复杂的东西简单化么?

现在我们再回答前面的问题:为什么我要学习数学?我们可以这么跟5岁的小朋友说:“妈妈给你10元钱,让你买酱油,酱油7元、棒棒糖1元一个,剩下的钱你可以买几个棒棒糖?”或许想吃棒棒糖的就会苦思冥想一番,或许未来妈妈真的给他10元钱去买酱油,结果回来就变成了一瓶酱油和3个棒棒糖。或者再过一段时间,这位小朋友会选择6元的酱油,因为可以获得4个棒棒糖了。他这么计算着:7+3和6+4都可以等于10,那么如果要必须买酱油的情况下,1+9也可以等于10。我们都知道也有1元的袋装酱油,于是9个棒棒糖到手了。任何知识的魅力都在于自我的发现,只有你对它产生了无限的兴趣,你就会不断的发现它的美,《数学之美》也可以变成《物理之美》。

有些人会说,上面的例子是利益驱动型,不是兴趣驱动型,对于一个孩子来说,你能指望他向成人那样:“我需要的不是物质世界,我需要的是精神世界?”5岁宝宝最喜欢做得事情就是在吃和玩上面,请问,成年人不也是如此么?这就是天性。只不过成年人的自控能力足够大罢了。

我们回到书本上,这本书是否合适自己?如果没有专业的数学知识,很难读懂。但是它又有着无限的魅力,让你不自觉的读下去,为什么?因为“数学之美”,虽然大多数人看不懂里面的公式,但是能够明白数学能解决的问题:概率统计学能够解决自然语言处理、布尔代数能解决搜索引擎的问题、有限状态机和动态规划能解决地图问题、向量+特征向量+余弦定理能解决自动新闻分类问题、最大熵模型解决金融问题,看着看着我就莫名的产生了一种想要学习算法的冲动,这不就是本书的意义所在么?

最后,我推荐几个章节希望有兴趣的读者可以关注下:

1、信息指纹,可以让复杂的数据用简单的一串数字存储。

2、13章,提到的简单之美。当然之后多次提到。

3、余弦定理(通过向量+特征向量+余弦定理)可以判断两条数据的相似性。

4、17章,简单密码学(对密码感兴趣的可以看看)。

5、布隆过滤器,用很少的空间存储大量的数据,从而解决黑名单的问题(黑名单数据量庞大的时候,会增加判断某一个名单是否出现过的难度)。

6、29章,分治算法,虽然没有很明白算法,但是原理其实很简单:把复杂的东西拆分成若干小的部分,然后进行逐个解决或者说各个击破。

7、30章,神经网络,其实没那么神秘,神经就好比一个网络(马尔科夫模型+贝叶斯网络)中的各个节点而已。

8、31章,大数据,这章是最推荐看的,而且没有很多专业的知识,一看就懂。不是什么都可以称之为大数据的,大数据需要满足几个条件:数据的代表性、数据的多维度、数据的完备性。现在有很多公司都自称自己有大数据,请不要侮辱大数据这个词。顺便说一下像百度这样的公司,近几年都在大数据上深耕,据我了解,比如医疗上面的项目,宁可免费做,只要求能够得到医疗方面的大数据,可见其对大数据的重视程度。

数学之美读后感篇6

吴军2012年的作品,源于其在谷歌黑板报的系列文章,讲述数学方法在信息技术中的应用,说明了为什么科学研究中方法论如此的重要,以及数学如何简单优雅地解决问题,直达本质。对比他的其他作品比如《浪潮之巅》、《硅谷之谜》,本书比较偏技术,属于目前大热的数据科学(data science)范畴,在云计算、大数据和人工智能等成为常态和趋势的今天,适合所有对it技术及相关管理人员阅读。对我而言,最大的收获包括:

规则vs算法:自然语言处理,在早期几十年基于文法规则都无法达到可应用的效果,终于在转变为基于统计方法且积累了足够数据后,形成了突破,达到了今日可大规模商用的效果。再次说明了数据及算法在今日的重要性。

一些常见应用涉及的优化算法:搜索相关(分词、网络爬虫、索引、结果排名、广告及反作弊)、文本处理(新闻分类、广告相关性、输入法)、地图路线规划、信息指纹、密码学等。这些算法不止适用于这些应用场景,还可以在其他许多地方借鉴,比如用户评论分析也需要用分词和语义分析,许多价值优化算法都需要用到期望值最大化和逻辑回归等。

优雅的理论模型:在初始阶段,出于时间和成本考虑,在技术实现上可能会使用一些拼凑的方法,甚至山寨,但是这种方法并不可持续,很难进行系统化的优化,开发维护成本都很高,最终会遇到灾难性问题。做事情需要有境界,最求简单而优雅的理论和工程实现,这在长期是非常有好处的。

吴军使用浅显易懂的语言,把解决问题的思路和复杂的数学模型讲得很清楚,虽然理解延伸阅读里的具体数学公式还是有些挑战。其实重要的是思想和方法,具体的实现可以在用到时再进一步的了解。如何用简单的语言把复杂的技术讲清楚,也是我工作的需要,要不断学习磨练。书里提到了启发吴军这方面能力的两本书,即《从0到无穷大》和《时间简史》,会有要去看下。

数学之美读后感篇7

在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。

那么,对我而言,到底提升了什么境界呢?

首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。

计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。

至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。

我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!

吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50-70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。

其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。

其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。

在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。

观国内的学说界,官风盛行、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。

看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。

数学之美读后感篇8

第8章里的“索引”,作者讲到谷歌面试产品经理的一道题目:如何向你的奶奶解释搜索引擎。关于这个问题,好的回答据说是用图书馆的索引卡片做类比。

我奶奶是个文盲,一生为农,日出而作,日落而息。她很少看电视,更别说图书馆。所以用图书馆的例子,对我们来说,很生动;对她来说,很生涩。

我们村的田地是按照地形、土质和流水等来划分的,计有一等地、二等地和三等地。一般情况下,一等地用来种水稻,二等地用来种菜,三等地用来种水果。

所以当我奶奶想要给我摘桔子的时候,她肯定不会从一等地或者二等地一块地一块地找过来,而是直接跑到三等地(一般就是山上)。

像这样的索引,是基于脑子里的“数据库”,因为田地不会很多,多了也来不及种,所以跟布尔代数没什么关系。但是这样解释,我奶奶就会大概明白了。我奶奶生前一次电脑也没用过,跟她解释这些,唯一的意义是,她会觉得我没有敷衍她,这会使她欣慰——如果有机会解释的话。

杨小凯曾经说,如果张五常多加注重使用数学模型,那诺奖也许就拿下了。张五常对此不以为然,反以为傲,自诩当今世上只有科斯、阿尔钦和他才敢只用文字,不借助数学模型就在经济学界占有一席之地。

当然,张五常也不是彻底否定数学的作用,他认为能够用文字解释的经济学原理,不必使用数学对其复杂化。

数学在信息学和经济学里都有广泛应用,但是在信息科学方面,对数学作用大小的争论就没有经济学那么大了。

我们常说搜索引擎的竞价广告,就可能经历到第三方公司,通常他们宣传自己是谷歌或者别的搜索引擎公司的代理商,然后通过不正当手段为客户提高网页的排名。谷歌在消除网络作弊方面做了很多努力,通过修改排序算法来为搜索者提供更加准确实效的信息。

“作弊的本质是在网页排名信号中加入噪音,因此反作弊的关键是去噪音。沿着这个思路可以从根本上提高搜索算法抗作弊的能力。”我们公司就是吃了这个亏,交了不少钱给第三方公司,结果算法一变,关键词的排名从前三下降到前三页没影。

社交搜索正在雄起,但是如果想要在传统的搜索引擎中占据有利排名,我想,第三方公司的技术水平是很关键的。

大学专业课里,数电总是要比模电简单不少。

自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指时间和数值上都是连续变化的信号。在实际电路中,模/数转换是一个很重要的过程,将预处理的模拟信号经过模/数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易集成化等。

简而言之,如果没有数学,就没有数字信号处理的概念,也就无法进行信号的传输,而数字信号传输在大规模的集成电路里是必不可少的,这是通信成功的基本要求。

之前看到有人说如果高中看这本书,也许数学就是另一番天地,会有所突破。我不觉得,如果高中看这种书,我想,大多数人还是会对数学更加望而却步。本书更适合通信电子这些专业的学生,在学习专业课的时候辅助阅读,对理解通信原理、数电模电等都有更形象生动的想法。

数学之美读后感8篇相关文章:

数学节数学演讲稿优秀8篇

数学节数学演讲稿8篇

四年级数学下册数学工作总结8篇

一年级数学下册数学工作总结最新8篇

小学数学骨干教师培训心得体会8篇

小学数学工作心得体会8篇

学期数学教师个人工作总结8篇

小学数学个人工作总结范文优秀8篇

小学数学个人工作总结范文通用8篇

高一数学备课组工作计划8篇

数学之美读后感8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
90422