具有前瞻性的教案能够帮助学生为未来的学习和生活做好准备,具有反思性的教案能够促使教师不断改进教学方法,提升专业素养,以下是吾优心得网小编精心为您推荐的初中平行线的教案6篇,供大家参考。
初中平行线的教案篇1
教学目标:
1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。
教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本p21图5。3—1)。
2、学生测量这些角的度数,把结果填入表内。
角∠1∠2∠3∠4∠5∠6∠7∠8
度数
3、学生根据测量所得数据作出猜想。
(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?
(3)图中哪些角是同旁内角?它们具有怎样的数量关系?
4、学生验证猜测。
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5、师生归纳平行线的性质,教师板书。
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。
性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。
性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。
平行线的性质平行线的判定
因为a∥b,因为∠1=∠2,
所以∠1=∠2所以a∥b。
因为a∥b,因为∠2=∠3,
所以∠2=∠3,所以a∥b。
因为a∥b,因为∠2+∠4=180°,
所以∠2+∠4=180°,所以a∥b。
6、教师引导学生理清平行线的性质与平行线判定的区别。
学生交流后,师生归纳:两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。
7、进一步研究平行线三条性质之间的关系。
教师:大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。
因为a∥b,所以∠1=∠2(两直线平行,同位角相等);
又∠3=∠1(对顶角相等),所以∠2=∠3。
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。
学生仿照以下说理,说出如何根据性质1得到性质3的道理。
8、平行线性质应用。
讲解课本p23例题
三、巩固练习:
课本练习(p22)。
四、作业:
课本p22。1,2,3,4,6。
初中平行线的教案篇2
【教学目标】
◆知识目标:理解掌握平行线的性质并能应用
◆能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。
◆情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。
【教学重点、难点】
◆重点:平行线的性质是重点
◆难点:例4是难点
【教学过程】
一、知识回顾:
1、平行线的判定
2、平行线的性质
二、
1、合作学习:
如图,直线ab∥cd,并被直线ef所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:
(1)图中有哪几对角相等?
(2)∠3与∠1有什么关系?∠4与∠2有什么关系?
2、你发现平行线还有哪些性质?
平行线的性质:
cfa432de1b两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
3、做一做:
如图,ab,cd被ef所截,ab∥cd(填空)
若∠1=120°,则∠2=()∠3=-∠1=()
4、例3如图1-14,已知ab∥cd,ad∥bc。判断∠1与∠2是否相等,并说明理由。
思考下列几个问题:
(1)∠1与∠bad是一对什么的角?它们是否相等?为什么?
(2)∠2与∠bad是一对什么的角?它们是否相等?为什么?
(3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵ab∥cd(已知)
∴∠1+∠bad=180°(两直线平行,同旁内角互补)∵ad∥bc(已知)
∴∠2+∠bad=180°(两直线平行,同旁内角互补)
e1b3da2fcd1a2bc图1—14∴∠1=∠2(同角的补角相等)
讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?
5、练一练:(p、14课内练习1、2)
6、例4如图1-15,已知∠abc+∠c=180°,bd平分∠abc。
∠abcbd与∠d相等吗?请说明理由。思考下列几个问题:
(1)ab与cd平行吗?为什么?
(2)∠d与∠abd是一对什么的角?它们是否相等?为什么?
(3)∠cbd与∠abd相等吗?为什么?
解:∠d=∠cbd ∵∠abc+∠c=180°(已知)
∴ab∥cd(同旁内角互补,两直线平行)∴∠d=∠abd(两直线平行,内错角相等)
∵bd平分∠abc(已知)
∴∠cbd=∠abd=∠d想一想:是否还有其它方法?(用三角形内角和定理等)
7、练一练:
如图,已知∠1=∠2,∠3=65°,求∠4的度数。
三、拓展
12a34bd图1-15ccd
1、如图1,已知ad∥bc,∠bad=∠bcd。判断ab与cd是否平行,并说明理由
2、如图2,已知ab∥cd,ae∥df。请说明∠bae=∠cdf d c
aba图1 b fecd
四、知识整理:
1、平行线的性质:
两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。
2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等
3、要注意一题多解
五、布置作业
p、15作业题及作业本。
初中平行线的教案篇3
今天我说课的内容是新教材浙教版八年级上册《平行线的判定》的第二课时。下面,我将从“教学内容”、“教学目标”、“教学方法及手段”和“教学过程”这四个部分来汇报对本节课的设计。
一、教学内容
“平行线”是我们在日常生活中都经常接触到的。它是学生学习几何的重要基础之一,也是学习其他学科知识的重要基础。在七(上)的第七章,学生已经学习了平行线的概念,知道平行线的表示方法,以及过直线外一点画一条直线与已知直线平行的画法。在前一节课,学生接触了“三线八角”,了解同位角、内错角、同旁内角等概念,掌握“同位角相等,两直线平行”的判定方法。经过直线外一点画一条直线与已知直线平行——这种画法的依据其实就是我们刚学过的平行线的判定方法:“同位角相等,两直线平行”。
因此,这一节课将在学生这样的知识基础上继续学习判定两直线平行的另两种方法:“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。在老教材中,平行线的判定是作为公理出现的,在新教材中却至始至终没有出现“公理”二字,只是作为一种方法出现。它是学生在已学知识的基础上通过合作、探究得到的判定两直线平行的方法,这里更注重学生的观察、分析、概括能力的培养。
在七年级的学习中,学生已经初步接触了简单的说理过程。因此本节学习时,将在直观认识的基础上,继续加强培养学生这方面的能力。
二、教学目标
基于上述内容、学情的分析,在新课程的理念下,数学教学应以学生的发展为本,以学生的能力培养为重。由此确定本节课的教学目标为:
1、让学生通过直观认识,掌握平行线的判定方法;
2、会根据判定方法进行简单的推理并能写出简单的说理过程;
3、运用“转化”的数学思想,培养学生“观察——分析”和“归纳——概括”的能力。
同时确定本节课的重难点:
重点:在观察实验的基础上进行判定方法的概括与推导。
难点:方法的归纳、提炼;
三、教学方法及手段
布鲁纳说过:“发现包括用自己的头脑来获得知识的一切形成。”所以根据本节课的教学内容特点,同时基于八年级学生的形象思维,遵循“教为主导,学为主体,练为主线”的思想,从实例出发,让学生亲历观察、发现、探究、归纳等一系列过程,再现了知识的发生、发现及发展的过程。在新知识学习和例题的教学中,教师始终以引导者的形象出现并在适当的时候对学生适当的启发。所以在本节课中我采取的教学方法是启发式引导发现法、让学生合作、探究,主动发现。
教学手段上,一开始借用道具“纸带”引出问题,从而围绕着这一问题进行探索,教师边启发引导,边巡视,随时收集与评定学生的学习情况,进行反馈调节。同时使用多媒体辅助教学,可以形象生动地直观展示教学内容,不但提高了学习效率和质量,而且容易加法学生的学习兴趣和积极性。
四、教学过程
1、复习旧知,承前启后
如图,直线l1与直线l2、l3相交,指出图中所有的同位角、内错角、同旁内角;在学生回答完问题后继续提问:如果∠1=∠5,直线l1与l3又有何位置关系。
此问题旨在复习原来的知识,从而为新知识作好铺垫。
2、创设情境、合作探究
问题是数学的心脏,而一个好的问题的提出,将会使学生产生求知欲,引发教学高潮。因此在复习好旧的知识后马上提出新问题。
问题:如何判断一条纸带的边沿是否平行?
要求:
1、小组合作(每组4人,确定组长、纪录员、汇报员等进行明确分工);
2、对工具使用不做限制。
对于要求一进行明确的分工是希望可以照顾各个层面的学生,希望每个学生都能得到参与,而在最后当汇报员进行总结的时候,可以由组内其他成员进行补充。而在要求二中明确了对工具不做任何限制,这样可以激发学生的创造性和积极性,从而会使我们的方法多样。
最后可以对学生的方法进行罗列,问其根据,由学生自己进行讲解。总结学生的各种方法,可能会有以下几种情况:一推二画三折。
⑴、推平行线法。经过下边沿的一点作上边沿的平行线,若所画平行线与下边沿重合,则可判断上下两边沿平行;
其实我们知道这种画法的依据就是利用同位角相等,两直线平行。而除这样的推法外学生也会想到用画同位角的方法来说明。就比如第2种情况中。
⑵将纸带画在练习本上,作一条直线相交于两边,如图所示,用量角器量出∠1,∠2,利用同位角相等,来判定纸带上下边缘平行;
而有些学生可能想到直接在纸带上画,直接在纸带上作一条相交于两边缘的直线,因为纸带局限了作图,因而可以利用的只有∠2、∠3、∠4。用量角器度量学生会发现∠3=∠2,∠4+∠2=1800。
⑶折的方法。
经过这样一系列的演示和归纳,学生就对平行线的新的两种判定方法有了自己直观的认识。这时候可以请学生模仿平行线判定方法一的形式请学生给出总结。应该说这时候学生的情绪会很高,通过自己的动手发现了平行线判定的其他方法,此时教师可结合多媒体利用动态再来演示这两种判定方法。同时在黑板上给出板书。在多媒体课件里可以是一句完整的表达,而在板书时,为更易于学生理解和掌握,只简单地记为:
内错角相等,两条直线平行。
同旁内角互补,两直线平行。
其实在教材中对这两种判定方法的编排里,它是先从“内错角相等,两直线平行”进行教学,然后再经过例题教学让学生对这种方法巩固加深,然后再从开始的引题里让学生寻找同旁内角的关系,从而引出“同旁内角互补,两直线平行”这种判定方法。而我在对这节课的处理上则是直接利用“纸带问题”引导学生先得到这两种方法,而后再是对这两种方法进行巩固、应用。
3、初步应用,熟悉新知
“学数学而不练,犹如入宝山而空返。“适当的巩固性、应用性练习是学习新知识、巩固新知识所必不可少的。为了促进学生对新知识的理解和掌握,给出以下两个小练习,意在对平行线的两种判定方法的理解。
找一找,说一说:
1、课本练习:如图,直线a,b被直线l所截,
⑴若∠1=750,∠2=750,则a与b平行吗根据什么
⑵若∠2=750,∠3=1050,则a与b平行吗根据什么
2、根据下列条件,找出图中的平行线,并说明理由:
图(1)∠1=1210,∠2=1200,∠3=1200;
图(2)∠1=1200,∠2=600,∠3=620。
对这2个练习可直接由学生抢答,并说明理由,因为题目简单又由这样抢答的方式,学生感到意犹未尽,此时马上推出范例教学。
例2、如图∠c+∠a=∠aec,判断ab和cd是否平行并说明理由。
确定例题是难点,基于以下两点考虑:
1、根据已有的条件与图形,无法解决问题时,要添加辅助线。
2、将推理过程由口述转化为书面表达形式,这也会让学生感到一定困难。
因此在本例题的教学中要充分体现教师引导者的地位,启发学生思考当遇到要我们说明两直线平行的时候,应该要从已知和图形中寻找什么这时学生会总结学过的三种判定方法,然后再要求学生在本题中是否存在满足这三种判定方法的条件当找不到解决问题的方法时,引导学生是否可以在没有防碍题目的前提下对图形做适当的改变,然后自然而然的引出作辅助线。
4、练习反馈,巩固新知。
说一说,写一写:
1、如图,∠1=∠2=∠3。填空:
⑴∵∠1=∠2()
∴∥()
⑵∵∠2=∠3()
∴∥()
2、如图,已知直线l1、l2被直线l3所截,∠1+∠2=1800。请说明l1与l2平行的理由。
练习的安排遵循了由浅入深的原则,让学生在观察后再动手。
说明:练习1由学生个别回答,其他学生更正,教师作注意点补充;练习2由3名学生板演,其余学生同练,对于个别基础差的学生在巡视时可做提示,最后集体批阅。
因为我所面向的是乡镇中学的学生,学生总体的素养相比较市直属学校的学生来说是有一定的距离的,所以我在对练习的选取上都是按照教材上的课内练习,我想教材之所以为教材总是有他一定的科学性和可取性。当然对于好的'学校或者是学有余力的学生,可以给学生做适当的提高,数学原本就是来源于生活,而又高于生活,反过来它又可以帮我们解决很多的实际问题。因此在编排题目的时候我也特意找了关于这方面的题目,让学生在一种实际的背景中去应用所学的知识。那么对这两道题我们可以根据自己授课的情况随机来定,课内有时间,可以让同桌进行讨论,共同完成;假使时间不够的话可以留给学生在课后思索,但是不作强制要求。
附加题:
⑴小明和小刚分别在河两岸,每人手中各有两根表杠和一个侧角仪,他们应该怎样判断两岸是否平行(设河岸是两条直线)你能帮他们想想办法吗?
⑵一个合格的弯行管道,当∠c=600,∠b=时,才能在经历两次拐弯后保持平行(ab∥cd)。请写出理由。
5、知识整理,归纳小结
用问题的形式引发学生思索本节课的收获
提醒学生在这两方面思考:
⑴在实验、合作、探究的过程中我们的收获
⑵如果要判定两直线平行时,我们可以联想到
6、布置作业:结合教材上的课外练习与浙教版作业本,选择适当的作业题,避免重复。
初中平行线的教案篇4
一、教学目标
1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.
2.会用平行线的性质进行推理和计算.
3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.
4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.
二、学法引导
1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.
2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.
三、重点·难点解决办法
(一)重点
平行线的性质公理及平行线性质定理的推导.
(二)难点
平行线性质与判定的区别及推导过程.
(三)解决办法
1.通过教师创设情境,学生积极思维,解决重点.
2.通过学生自己推理及教师指导,解决难点.
3.通过学生讨论,归纳小结.
四、课时安排
1课时
五、教具学具准备
投影仪、三角板、自制投影片.
六、师生互动活动设计
1.通过引例创设情境,引入课题.
2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.
3.通过学生讨论,完成课堂小结.
七、教学步骤
(一)明确目标
掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.
(二)整体感知
以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习巩固新知.
(三)教学过程
创设情境,复习导入
初中平行线的教案篇5
教学目的
1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.
2.使学生了解平行线的性质和判定的区别.
重点难点
1.平行的三个性质,是本节的重点,也是本章的重点之一.
2.怎样区分性质和判定,是教学中的一个难点.
教学过程
一、引入
问:我们已经学习过平行线的哪些判定公理和定理?
学生齐答:
1.同位角相等,两直线平行.
2.内错角相等,两直线平行.
3.同旁内角互补,两直线平行.
问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?
学生答:
1.两直线平行,同位角相等.
2.两直线平行,内错角相等.
3.两直线平行,同旁内角互补.
教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,需要进一步证明.
二、新课
平行线的性质一:两条平行线被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
怎样说明它的正确性呢?
方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.
方法二从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)
已知:如图2-32,直线ab、cd、被ef所截,ab∥cd.
求证:∠1=∠2.
证明:(反证法)
假定∠1≠∠2,
则过∠1顶点o作直线a′b′使∠eob′=∠2.
∴a′b′∥cd(同位角相等,两直线平行).
故过o点有两条直线ab、a′b′与已知直线cd平行,这与平行公理矛盾.即假定是不正确的.
∴∠1=∠2.
另证:(同一法)
过∠1顶点o作直线a′b′使∠e0b′=∠2.
∴a′b′∥cd(同位角相等,两直线平行).
∵ab∥cd(已知),且o点在ab上,o点在a′b′上,
∴a′b′与ab重合(平行公理)
∴∠1=∠2.
平行线的性质二:两条平线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.
已知:如图2-33,直线ab、cd被ef所截,ab∥cd,
求证:∠3=∠2.
证明:
∵ab∥cd(已知)
∴∠1=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠3=∠2(等量代换).
说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励.并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.
平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.
已知:如图2-34,直线ab、cd被ef所截,ab∥cd.
求证:∠2+∠4=180°.
证法一:
∵ab∥cd(已知),
∴∠1=∠2(两直线平行,同位角相等),
∵∠1+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
证法二:
∵ab∥cd(已知),
∴∠2=∠3(两直线平行,内错角相等).
∵∠3+∠4=180°(邻补角),
∴∠2+∠4=180°(等量代换).
例已知某零件形如梯形abcd,现已残破,只能量得∠a=115°,∠d=100°,你能知道下底的两个角∠b、∠c的度数吗?根据是什么?(如图2-35).
解:∠b=180°-∠a=65°,
∠c=180°-∠d=80°.(根据平行线的性质三)
小结:平行线的性质与判定的区别:
1.从因果关系上看
性质:因为两条直线平行,所以……;
判定:因为……,所以两条直线平行.
2.从所起作用上看
性质:根据两条直线平行,去证两角相等或互补:
判定:根据两角相等或互补,去证两条直线平行.
三、作业
1.如图,ab∥cd,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?
2.如图,ef过△abc的一个顶点a,且ef∥bc,如果∠b=40°,∠2=75°,那么∠1、∠3、∠c、∠bac+∠b+∠c各是多少度,为什么?
3.如图,已知ad∥bc,可以得到哪些角的和为180°?已知ab∥cd,可以得到哪些角相等?并简述理由.
教后记:.
学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。
初中平行线的教案篇6
一、分析与设计
本节课是苏科版义务课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。
?数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学叙事
3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪??
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容:
①供火车行驶的铁轨上;
②游泳池中的泳道隔栏;
③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图————度量————填表————猜想
学生活动二:画图————剪图————叠合
让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究————小组讨论————成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b(已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1、(抢答)课本p13练一练1、2及习题7。2 1、5
2、(讨论解答)课本p13习题7。2 2、3、4
(五)课堂总结:这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)
⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
(六)作业
学习与评价p5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)
六、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:
①教的转变:本节课教师的.角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。
②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。
③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐'导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧
初中平行线的教案6篇相关文章: