分数乘法的教案通用8篇

时间:
lcbkmm
分享
下载本文

通过系统化的教案,教师能够将复杂的知识点简单化,易于学生理解,我们在写教案之前一定要先确定好自己的教学目标,吾优心得网小编今天就为您带来了分数乘法的教案通用8篇,相信一定会对你有所帮助。

分数乘法的教案通用8篇

分数乘法的教案篇1

教学目标:

知识与技能

1.理解分数乘整数的意义。

2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。

过程与方法

使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。

情感态度与价值观

1.感受数学与实际生活之间的联系,激发学习兴趣。

2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重点:

理解分数乘整数的意义,探究计算法则。

教学难点:

正确计算及约分方法。

教学过程:

一、以旧引新,唤醒认知

(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)

(二)口答

(三)感受分数乘整数的意义

21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。

二、出示问题,探索新知

1、自主学习红点1。

(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的'数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。

(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。

(3)交流、质疑。

(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)

2、自主学习红点2。

(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。

(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。

3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)

三、分层练习,强化认知 .巩固分数乘整数的意义

1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。

2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。

3、明辨是非。

4、结合实际,解决问题。

(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

四、总结

本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。

分数乘法的教案篇2

教学内容:

教科书15页,例2及做一做 ,练习四8─10题。

教学目的:

(1)、会画线段图分析分数乘法两步应用题的数量关系。

(2)、掌握分数两步连乘应用题解答方法,并能正确解答。

(3)、进一步培养学生初步的逻辑思维能力。

教学重点:分析分数乘法两步应用题的数量关系。

教学难点:抓住知识关键,正确、灵活判断单位1。

教学过程:

(一)、复习引入:

1、先说说各式的意义,再口算出得数。

╳ ╳

2、指出下面含有分数的句子中,把谁看作单位1。

(1)乙数是甲数的 。(甲数)

(2)乙数的 相当于甲数。(乙数)

(3)大鸡只数的 等于小鸡的只数。(大鸡)

(4)大鸡的只数相当于小鸡的 。(小鸡)

(二)、探究新知:

1、出示例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

(1)审题:

全体默读,再指名读,说出已知条件和问题。

师生边讨论边画出线段图。

先画一条线段表示谁储蓄的钱数?为什么?再画一条线段表示谁储蓄的钱数?画多长?根据什么?

(根据:小华的钱数是小亮的 ,把小亮的钱数看作单位1,平均分成6份,再画出与这样的5份同样长的线段表示小华储蓄的钱数)

然后画一条线段表示谁储蓄的钱数?画多长?根据什么?

(又根据:小新的钱数是小华的 ,把小华的钱数看作单位1,平均分成3份,画出与这样的2份同样长的线段表示小新储蓄的钱数)。

小亮

18元

?元

?元

小华

小新

(2)分析数量关系:

引导学生从已知条件分析:根据小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,可以把谁看作单位1,求出谁的钱数?再根据小新储蓄的钱是小华的 ,又可以把谁看作单位1,求出谁的钱数?

也可以多问题分析:要求小新储蓄多少元,就要知道谁的钱数?这个数量题目中告诉我们了吗?所以要先求出谁的钱数?再求出谁的钱数?

(3)确定每一步的算法,列出算式。

怎么求小华的钱数?

根据小华的钱数是小亮的 ,把小亮的钱数看作单位1,求小华储蓄多少钱就是求18元的 是多少,用乘法计算。

板书:18╳ =15(元)

怎么求小华的钱数?

根据小新的钱数是小华的 ,把小华的钱数看作单位1,求小新储蓄多少钱就是求15元的 是多少,用乘法计算。

板书:15╳ =10(元)

把上面的分步算式列成综合算式:

板书:18╳ ╳ =10(元)

(4)检验写答:

答:小新储蓄了10元。

2、做一做。

学生独立画出线段图,教师巡视指导。

3、归纳:今天学习的是连续两次求一个数据的几分之几是多少的应用题,解答这类题的关键是弄清第一步把谁看作单位1,第二步把谁看作单位1。

(三)、课堂练习:

独立完成练习四的第8、9、10题。

板书设计:

例2:小亮的储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄了多少元?

小亮

18元

?元

?元

小华

小新

18╳ =15(元)

15╳ =10(元)

18╳ ╳ =10(元)

答:小新储蓄了10元。

分数乘法的教案篇3

教学目标

1.进一步理解分数乘整数的意义。

2.掌握分数乘整数的计算法则。

3.能够熟练准确地计算分数乘整数的计算题。

教学重点

分数乘整数的计算方法,能正确计算。

教学难点

理解先约分再计算能使计算简便。

教师指导与教学过程

学生学习活动过程

设计意图

一、复习分数乘整数的意义及计算法则

二、出示例题

1.出示3/4×6

教师引导学生能不能先约分再计算。

学生得出结论后教师讲解先约分后计算的格式。

你会填吗?

1/6+1/6+1/6+1/6=1/6×()

3/4+3/4+3/4+3/4+3/4

=3/4×()

2/25+2/25+2/25

=2/25×()

在计算分数乘整数时,用分数的分子(),分母()。

学生先用计算法则进行计算后进行约分。

学生进行计算并比较两种方法那种方法简单。

复习巩固分数乘整数的计算方法。

进一步应用分数乘整数的计算方法,体验先约分再计算。

教师指导与教学过程

学生学习活动过程

设计意图

2.练习

完成课本第3页的做一做

三、综合练习

1.练一练第1题

2.教师指导完成练一练第2题

学生完成后还可以估一估一个月、一年能滴多少水。

四、布置作业

完成练一练第3、4、5题

学生独立完成做一做

学生通过涂一涂,可以得到结果为10/15,再约分得到2/3。学生也可以先约分再计算。

学生根据老师的`指导进行计算,并解释结果的实际意义。

借助图形语言,加深学生对分数乘整数的意义的理解。

巩固分数乘整数的计算方法,培养学生的节约意识。

板书设计:

分数乘整数

复习题:出示例题3/4×6

分数乘法的教案篇4

教学目标:

1、培养学生的计算能力,自主、合作探索意识及解决问题策略优化的思想能灵活运用所学计算方法解决生活中的简单问题。

2、让学生在课堂中交流学习数学的感受,获得学习成功的体验。

教学重点:

理解分数乘整数的`意义,掌握分数乘整数的计算方法。

教学准备:

学生做的风筝

教学过程:

一、 复习

1、1/2× 3表示的意义是什么?(让学生自己说一说,)

2、分数乘整数的计算法则是什么?

二、基础练习

1、的3倍是多少?

2、10个是多少?

订正时说说每个算式表示的意义。

三、专项练习

1、自主练习第4、5、6题

这三题是运用分数和整数相乘的知识解决实际问题的题目。教学时,要让学生自主进行,重点放在探究列式的理由和计算的方法上。

2、第8题是求正方形周长的题目。练习时,可让学生先回顾一下正方形周长的计算方法,然后列式计算。

3、第7、10题

这两道题是直接写得数的题目。练习时,可让学生先约分,然后进行口算,这样速度比较快一些。需要注意的是,教师在设计这样的题目时,数不宜过大,要求不宜过高。

4、第9、12题

这两道题是学生自己独立作,利用分数与除法的关系解决问题的。

四、合作总结

这节课你巩固了那些知识?

五、创意作业

同桌出题交换解答,交换批改,共同提高。

分数乘法的教案篇5

教学目标:

1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

2、知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

教学重难点:

学生能够熟练的计算出分数乘以分数的结果。

教学方法:

师生共同归纳和推理

教学准备:

教学参考书、教科书

教学过程:

一、复习导入

教师出示教学板书,请学生计算下列分数乘法运算题。

3/11×3 9/16×12 21×5/14

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)

二、讲授新课

教师出示课本例题:一张长方形的纸条,第一次剪去它的1/2,第二次剪去剩余部分的1/2。此时,剩下的部分占这张纸条的几分之几?如果第三次再剪去剩余部分的1/2,那么剩下的部分占这张纸条的几分之几?

教师让学生思考这个例题,并对学生进行提问。

1/2×1/2?分析第一次剪去它的1/2,第二次再剪去剩下的1/2,那就是1/2的1/2。也就是1/2×1/2

教师让学生从图中看出是1/4,让学生从1/2×1/2=1/4中思考,分数乘以分数的运算规则,让学生同桌之间相互讨论。

教师提问学生说说分数乘以分数的运算法则。并对学生的说法给以鼓励。

教师和全班学生共同总结出分数乘以分数的运算法则:分数乘以分数,分子乘以分子作为分子,分母乘以分母作为分母。

验证法则:让学生折纸验证3/4×1/4?,并让学生分析为什么?

课堂讨论:让学生能够根据课本7页中的插图,说一说,红色部分占斜线部分的几分之几?占整张纸的几分之几?让学生进一步理解整体和部分的关系;初步理解求分数的几分之几是多少?

三、巩固练习

做课本8页试一试,1/4×2/3;3/5×2/9;7/8×5/14

让学生运用分数乘以分数的法则来进行计算。注意能约分的先约分,如:7/8×14/15中的7和14先约分。

四、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

1/2×1/2=1/4;1/2×1/2=1×1/2×2=1/4

分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数乘法的教案篇6

教学内容:

课本第14、15页的例1和例2,完成做一做和练习四的第1~5题。

教学重点:

学会找单位1

教学难点:

依题意画出线段图

教学目的:

1.使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2.培养学生分析能力,发展学生思维。

教学过程:

一、复习

1.先说下列各算式表示的意义,再口算出得数。

2.列式计算。

(1)20的是多少?

(2)6的是多少?

让学生列式计算解答,再指名说说算式的意义,并指出把哪个数看作单位1。

二、新授。

1.教学例1。

出示例1:学校买来100千克白菜,吃了,吃了多少千克?

(1)指名读题,说出条件和问题。

(2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

先画一条线段,表示100千克白菜。

吃了,吃了谁的?(100千克白菜)要把100千克白菜平均分成5份,吃了4份,怎样表示?

教师边说边画出下图:

(3)分析数量关系,启发解题思路。

引导学生说出:吃了,是吃了100千克的,所以把100千克看作单位1,要求100的是多少,根据一个数乘以分数的意义,直接用乘法计算。

(4)学生列式计算:=100(20)?=80

(5)再让学生分析一下数量关系。

(6)练一练:完成第18页做一做第1题。

评讲订正时,让学生分析一下数量关系。

2.教学例2。

出示例2:小林身高米,小强身高是小林的,

小强身高多少米?

(1)明确题意,指名读题,说出条件和问题。

(2)让学生画出线段图并标明条件和问题。

①要画几条线段表示题里的数量关系?

②引导学生根据题里的条件,确定谁的身高要画得长一些,谁的身高画得短一些。

③第一条线段表示谁的身高?画了第一条线段表示小林的身高,该怎样画第二条线段表示小强的身高。

启发学生:根据小强身高是小林的,要把表示小林的线段平均分成8份,在它的下面画出其中7份的'长度代表小强的身高。

教师边启发边画出如下线段图:

(3)分析数量关系,启发解题思路。

启发学生思考:小强身高是小林的,就要把小林的身高看作单位1,要求小强的身高,就要求出小林身高的是多少,即求的是多少,根据分数乘法的意义,用乘法计算。

(4)让学生列式计算。

(5)如果把上题改成下面的题:

小强身高米,小林身高是小强的倍,小林身高多少米?

问:哪条线段画得长一些?怎样画?

把谁看作单位1为什么?

怎样列式?

教师边启发边画出如下线段图:

(6)教师说明:

一个数是另一个数的几分之几,可以是真分数,也可以是带分数。这里是带分数,把化成假分数,上题也可以改成小林身高是小强的

指出:在这种情况下乘得的积大于原来的被乘数。

(7)做一做。

完成课本14页做一做的第3题。

三、巩固练习

1.完成课本第14页做一做的第3题。

学习列式计算后,指名让学生分析数量关系。

2.完成练习四的第5题。

说明:一个数是另一个数的几分之几,不可以是真分数,也可以是带分数,还可以是整数。

订正时指名分析。

四、全课小结。

今天我们学习的分数乘法一步应用题,应根据一个数是另一个数的几分之几分析数量关系,应用一个数乘以分数的意义来解答。

五.作业。

练习四的第1~4题。

分数乘法的教案篇7

教学目标:

1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

教学重点:

分数乘整数的意义和计算法则。

教学难点:

分数乘整数的计算方法以及算法的优化。

教学方法:

自主合作探究。

教具准备:

多媒体

教学过程:

一、复习引入

1.同学们,我们已经学会了分数的.加法和减法,下面口算。

2.今天我们来学习分数乘法。板书

谁能编一道分数乘法算式(择几道板书黑板一侧)

分数乘法有很多,今天先研究其中一种:分数乘整数。

看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

二、探究

1.理解意义。

出示例题1:做一朵绸花用 米绸带。

(1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

课件: + + =(米)

(2)小华做7朵这样的绸花,一共用了几分之几米绸带?

课件: + + + + + + =(米)

(3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

+ + + + + + + + + + + + + + =?

这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

板书: ×3= 7×= ×15=

谁能说说 ×3表示什么意思?7×呢?

前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

2.探究算法。

现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

×3= =

×3=++=

……

交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系:×3=+ + = = = (教师板书),符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

练习:×7,与原来加法结果比较,完全正确。

谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

继续研究:×30

提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

练习:先判断可不可以约分?怎样约分?

总结注意事项:能约分的先约分再乘。

三、练习

填一填:练习第一、二题。

算一算:完成3第三、七题。

四、总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、作业

练习八第2题、第4题。

分数乘法的教案篇8

教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:掌握分数乘整数的计算方法。

教学难点:理解分数乘整数和一个数乘分数的意义。

教学准备:课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图) 师:仔细观察,从图中能得到哪些数学信息?这里的“个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果 预设:(1)(个);(2)(个);(3)(个);(4)3个就是6个就是,再约分得到(个)。(根据学生发言依次板书)

3.比较分析 师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?

预设: 生1:每个人吃个,3个人就是3个相加。

生2:3个个相加也可以用乘法表示为。

提出质疑:3个相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个相加是多少”。

师:再来看这里的'第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。(二)分数乘整数的计算方法

1.不同方法呈现和比较 师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,的计算过程用式子该如何表示?

预设: 生1:按照加法计算=(个)。 生2:(个)。

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个。

2.归纳算法 师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢? 引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么? 小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

二、巩固练习,强化新知

1.例1“做一做”第1题 师:说出你的思考过程。

2.例1“做一做”第2题 师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 l的和是多少。 预设2:还可以说成求12 l的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(l)。 (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。) 交流:是根据什么列式的?引导说出思考的过程并板书:“求12 l的一半,就是求12 l的是多少。” (3)出示第2小题学生自练。引导说出:“12×表示求12 l的是多少。”在这里都是把12 l看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。) 归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的,吃了多少千克? 师:你能说说这个算式表示的意义吗?“求3千克的是多少。”

2.比较两种意义 出示:一袋面包重千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。 引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。 师:那么,它们有什么是相同的呢?(计算方法和结果)

五、联系实际,灵活运用 1.算式可以列成 × ,表示 ;或者表示 ;

也可以列成 × ,表示 。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2.比较练习

(1)一堆煤有5吨,用去了,用去了多少吨?

(2)一堆煤有吨,5堆这样的煤有多少吨?

3.拓展练习

1只树袋熊一天大约吃 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

六、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

分数乘法的教案通用8篇相关文章:

小班《拔萝卜》教案通用8篇

大大班语言课教案通用8篇

大班《端午节》教案通用8篇

《刷牙》教案通用8篇

蘑菇画教案通用8篇

绘本《茶》教案通用8篇

健康大班教案通用8篇

二上数学教案通用8篇

网小鱼教案通用8篇

领域幼儿园教案通用8篇

分数乘法的教案通用8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
152412