分数乘法的教案精选7篇

时间:
Iraqis
分享
下载本文

教案的评估与反思能够帮助教师不断改进教学策略,提升专业素养,详尽的教案能够为教师提供丰富的教学资源,使学生的学习体验更加多元化,吾优心得网小编今天就为您带来了分数乘法的教案精选7篇,相信一定会对你有所帮助。

分数乘法的教案精选7篇

分数乘法的教案篇1

教学目标

1.使学生掌握求一个数的几分之几是多少的两步分数乘法应用题的解题思路和解答方法。

2.在画图、分析的过程中培养学生的分析能力、推理能力等初步的逻辑思维能力。

教学重点和难点

1.正确分析关键句,找准单位1。

2.掌握分析思路,弄清所求问题是求谁的几分之几是多少。

教学过程

(一)复习准备

1.口算,并口述第二组算式的意义。

2.列式。

这些算式求的是什么?(求一个数的几分之几或几倍是多少。)

这里的b,a,x就是什么?(单位1)

3.找出下列各句子中的单位1,再说明另一个数量与单位1的关系。

提问:(3)题中怎样求甲?(4)题中怎样求乙?

今天我们继续学习分数乘法应用题。

(二)讲授新课

1.出示例3。

2.理解题意,画出线段图。

(1)读题,找出已知条件和所求问题。

(2)提问:你认为应着重分析哪些已知条件?(小华储蓄的钱是小亮的

(3)分组讨论这两个已知条件应怎样理解。

(4)学生口述已知条件的意义,老师板演线段图,加深学生对题意的理解。

18元看作单位1,平均分成6份,小华储蓄的钱数相当于这样的5份。

师板演:

数看作单位1,平均分成3份,小新储蓄的钱数相当于这样的2份。

所以小新储蓄的钱数是以谁为单位1?(以小华储蓄的钱数为单位1。)

怎样用线段表示小新的钱数?

生口述,师继续板演:

(把小华储蓄的钱数平均分成3份,小新储蓄的'钱数相当于这样的2份。)

求什么?(小新的钱数)

3.分析数量关系,列式解答。

(1)根据刚才的分析,再结合线段图想一想,能不能一步求出小新储蓄的钱数?(不能)

必须先求什么?再求什么?(先求小华储蓄的钱数,再求小新储蓄的钱数。)

因此这道题要分两步解答。

根据哪两个条件能求出小华的钱数?

求出小华的钱数,又怎样求小新的钱数?

(2)以小组为单位共同完成列式解答。

(3)口述列式,并说明理由。

求什么?为什么这样列式?(求小华储蓄的钱数。因为小华储蓄的钱

求什么?根据什么列式?(求小新储蓄的钱数,因为小新储蓄的钱数

(4)你能列综合算式解答吗?

答:小新储蓄了10元。

(三)巩固反馈

1.出示做一做。

小明有多少枚邮票?

(1)读题,找出已知条件和问题。

(2)请你确定从哪些条件入手分析。

(3)小组讨论:分析已知条件并画线段图。

(4)反馈:请代表分析,并出示该小组的线段图。

作单位1,平均分成6份,小新的邮票数量是这样的5份。

均分成3份,小明的邮票是这样的4份。求小明有多少邮票。

应先求什么?再求什么?

(6)列式解答,做在练习本上。

2.出示21页的9题。

要求学生独立画图,分析解答。再互查。

3.变换条件和问题进行对比练习。

(1)找出已知条件中的相同处和不同处。

(2)画图分析并列式解答。

4.选择正确列式。(小组讨论完成)

第二天看了多少页?

(四)布置作业

课本20页第6题,21页第10,12题。

课堂教学设计说明

解答分数应用题的关键是弄清题中的数量关系,谁和谁比,把谁看作单位1,求的是谁的几分之几。这也正是课堂教学的重点与难点,是学生分析能力的体现。是我们课堂的教学目标之一。

这节课是分数乘法应用题的第二节。学生已具备初步分析已知和找单位1的能力,但是例3增加了一个条件,并增加了一个数量。要利用已有的分析方法分步分析,才能化难为易。

教学中采用小组合作的形式,发挥集体智慧,在共同讨论中理解已知条件,有利于学生排除思维障碍。教师再配以线段图加深强化学生理解题意,以实现旧知识向新知识的迁移和飞跃。练习的设计,由易到难、变换条件,有助于学生灵活分析,防止定势。

分数乘法的教案篇2

教学内容:

教材第2页例1练习一1~3。

教学目标:

1、结合具体情境,借助示意图理解分数乘整数的意义,渗透数形结合思想。

2、借助转化的方法理解分数乘整数的算理,并能正确地进行计算,提高计算能力。

3、在探索与交流活动中培养观察、推理的能力。

教学重点:

理解他数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:

理解分数乘整数的计算方法。

教学过程:

一、复习旧知,引出课题。

1、复习题。

(1)列式并根据题意说出算式中的两个乘数各表示什么。

5个12是多少? 9个11是多少? 8个6是多少?

提问:通过解决这三道整数乘法计算题,你有什么想说的吗?

(整数乘法是表示几个相同加数的和的简便运算)

(2)计算:

计算 时向学生提问:这道题的什么特点?计算时把什么做分子?使学生看到三个加数都相同,计算时3个3连加的结果做分子,分母不变。

2、引出课题。

这题我们还可以怎么计算?今天我们就来学习分数乘法。

二、创设情境,探究分数乘整数。

1、教学分数乘整数的意义。

出示例1,指名读题。小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个,3人一共吃多少个?

(1)分析演示

题中的':小新、爸爸、妈妈一起吃一个蛋糕,每人吃 个意思什么?(每人吃了整个蛋糕的 )

确定标准量(单位1)和比较量。每人吃了整个蛋糕的 ,是把整个蛋糕看作标准量(单位1);把每人吃的份数看作比较量。

借助示意图理解题意

根据题意列出加法算式 + +

(2)观察引导:这道题3个加数有什么特点?使学生看到3个加数的分数相同。

教师问:求三个相同分数的和怎样列式比较简便呢?引导学生列出乘法算式。教师板书: 。再启发学生说出 表示求3个 相加的和。

(3)比较 和125两种算式异同

提示:从两算式表示的意义和两算式的特点进行比较。(让学生展开讨论)。

通过讨论使学生得出:相同点:两个算式表示的意义相同。

不同点: 是分数乘整数,125是整数乘整数。

(4)概括总结

教师明确:两个算式表示的意义相同,谁能用一句话概括出两算式的意义?(引导学生说出都是表示求几个相同加数的和。)

2、教学分数乘以整数的计算法则。

(1)推导算理:由分数乘整数的意义导入。

问: 表示什么意义?引导学生说出表示求3个 的和。板书: + + 。学生计算,教师板书: 。提示:分子中3个2连加简便写法怎么写?学生答后板书: (块)教师说明:计算过程中间的加法算式部分是为了说明算理,计算时省略不写。(边说边加虚线)

(2)引导观察: 的分子部分、分母与算式 两个数有什么关系?(互相讨论)

观察结果: 的分子部分23就是算式中 的分子2与整数3相乘,分母没有变。

(3)概括总结:请根据观察结果总结 的计算方法。(互相讨论)

汇报结果:(多找几名学生汇报)使学生得出 是用分数 的分子2与整数3下乘的积作分子,分母不变。

根据 的计算过程,明确指出:分子、分母能约分的要先约分,然后再乘。约分进约得的数要与原数上下对齐。然后让学生将 按简便方法计算。

3、反馈练习:看图写算式:做一做、练习一第1题。

三、全课小结。

分数乘法的教案篇3

设计说明

本节课是在学生学习了分数乘法的意义和计算方法的基础上进行教学的。围绕教学重点,以探究为主线设计教学过程,通过观察、对比、讨论、交流来理解分数乘法的意义,探究分数乘法的计算方法。本节教学在设计上主要有以下两个特点:

1.重视数形结合在学习中的作用。

数形结合是学生获取数学知识的有效手段之一,它能促进学生对抽象数学知识的理解。上课伊始,就充分地调动了学生动手操作的积极性,通过画图的方式初步感知一个数的几分之几是多少;在新课的教学中,再次利用数形结合的方法,帮助学生在自主探索和合作交流的过程中理解分数乘法的意义并获得广泛的数学活动经验。

2.注重从不同的问题情境中引导学生从不同的角度理解分数乘法的意义。

在教学过程中从生活情境中提出不同的问题,引导学生根据已有的知识经验或画图法去解决问题,从中理解分数乘法的意义。

课前准备

教师准备 ppt课件

学生准备 圆形卡片

教学过程

第1课时 求一个数的几分之几是多少

⊙创设情境,激趣导入

1.动手操作。

(1)你能从桌面上的12根小棒中拿出它的吗?呢?

(2)说一说你是怎么想的。

2.引导发现。

从刚才的操作中,你发现了什么?

3.交代学习目标。求一个数的几分之几是多少。

设计意图:通过动手操作,使学生初步感知分数乘整数的意义,为理解整数乘分数的意义作铺垫。

⊙类比推理,明确意义

1.获取信息,提出问题。

课件出示问题:奇思早上吃了6块饼干,笑笑吃的饼干数是奇思的,淘气吃的饼干数是奇思的。

(1)从题中你获得了哪些数学信息?

(2)你能提出哪些数学问题?

预设

①笑笑吃了多少块饼干?

②淘气吃了多少块饼干?

……

2.分析、解决问题。

(1)讨论解题策略。

师:要求笑笑吃了多少块饼干,这道题应该如何解答呢?请大家在小组内讨论、交流一下。

(学生独立思考,小组交流)

(2)学生试做。

(指导学生通过画图的方法帮助思考)

(3)汇报,并说出思考过程和解答方法。

方法??

生:笑笑吃的`饼干数是奇思的,也就是说把奇思吃的6块饼干看作单位“1”,再把单位“1”平均分成2份,其中的1份是笑笑吃的饼干数。

师:说得真好!把6块饼干看作一个整体,6块饼干的是3块饼干。

方法二

生:把每块饼干都分成2个,6块饼干的就相当于6个,也就是3块饼干。

师:这也是一个很好的方法。我们知道了6块饼干的是3块饼干。

师:那么这道题应该如何列式计算呢?(6个列式为6×)

设计意图:引导学生借助“画图”的方法来理解数学问题,得到解决数学问题的策略的方法,渗透了数形结合思想,让学生通过实践得出“画图”是一种很好的解决问题的方法。

3.拓展分数乘整数的意义。

师:综合以上两种方法,你们有什么发现?

分数乘法的教案篇4

教学目标:

1、能根据一个数乘分数的意义,理解“求一个数的几分之几是多少”的问题的数量关系。

2、会用线段图分析分数乘法一步应用题的数量关系。

3、经历分析数量关系的过程,提高学生分析能力与解决问题的能力。

教学过程:

一、创设情境,生成问题

师:同学们,我国人多地少的矛盾日益突出,所以应控制人口增长并需要保护好耕地。据统计,2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的2/5.我国人均耕地面积是多少?谁愿意帮老师解决这个问题吗?(学生积极举手发言)

师:这是用分数乘法的知识来解决生活中的实际问题,这节课我们一起来进行有关的知识的学习,揭示并板书课题:

二、探索交流,解决问题

①、从题目里你知道了哪些信息?需要解决的问题又是什么?

②、要解决我国人均耕地面积是多少平方米,就要分析其中的条件和问题,怎样分析呢?(用线段图分析数量关系)。

师出示课本的线段图。

③、你会表示我国人均耕地面积吗?(生动手画图指名板演)

④、给大家说说你是怎样表示的?

⑤、从线段图中你还知道什么?(师出示)“要求我国人均耕地面积,就是求……”(指多名说)

(师出示)“求2500的2/5是多少?“ ⑥、你们会算吗?动手试试。(指名板演): 25005=1000(平方米)

为什么要这样算?还有其它方法吗?(预设:2500÷5×2)

⑦、通过计算知道了2003年我国人均耕地面积是1000平方米,你知道我国人均耕地面积减少的原因是什么?

结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情。

三、巩固应用,内化提高。

1、一头鲸长28米,一个人的身高是鲸体长的2/35 。这个人的身高多少米?

①、找出单位“1”,谁能解决,动手试试

②、列式解决,讲评。

2、练习四第2题:让学生先找出题目中隐藏的单位“1”——全世界的丹顶鹤数2000只。

3、练习四第3题:让学生先找到单位“1”,再独立列式解答。

四、回顾整理,反思提升

师:这节课你们一定有不少的收获吧,谁能说说?

板书

求2500的2/5是多少?25005=1000(平方米)

分数乘法的教案篇5

教学内容:

教材第3页例2,做一做。

教学目标:

1、通过直观操作理解一个数乘分数的意义

2、通过迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。

3、通过分数乘分数的应用的广泛事例,对学生进行学习目的性,激发学生学习动机和兴趣。

教学重点:

理解一个数乘分数的意义。

教学难点:

理解一个数乘分数的意义。

教学过程:

一、复习导入

1、计算

2、一个正方形的边长是 m,它的周长是多少米?

二、创设情境,探究整数乘分数

1、借助情境理解整数乘分数的意义。

1桶水有1/2l。3桶共多少l?12 桶是多少l?14 桶是多少l?

(1)理解题意,明确题中的数量关系:单位量数量=总量

(2)根据题意列出算式: 3桶水共多少l?1/23

12 桶是多少l?1/212 14 桶是多少l?1/214

(3)探究每道算式的意义

1/23表示求3个1/2l,也就是求1/2l的3倍是多少。

1/2是一半,1/212 表示12l的.一半,也就是求12l的1/2是多少。

1/214 表示求1/2l的14倍是多少。

发现:一个数乘分数表示的是求这个数的几分之几是多少。

(4)解决问题。123=36(l)

121/4=3(l) 答:3桶共36l。 桶是6l。 桶是3l。

2、完成做一做

一袋面粉重3㎏。已经吃了它的 ,吃了多少千克?

学生独立解答后汇报。

3、在学校举行的泥塑大塞中,一班共制作泥塑作品15件,其中男生做了总数的 。一班男生做了多少件?(分析:男生做了总数的 ,是把一班共制作泥塑作品15件看作单位1,把总数15件平均分成5份。男生做的占其中的3份。)

4、归纳总结

求一个数的几分之几是多少,用乘法计算。

5、练习:29 6= 1234 = 310 4=

观察巡视学生是否先约分再计算。在约分时,是否有学生将分子与分子约分,为什么只能将整数与分数的分母约分。

四、巩固练习,反馈提高

练习一第2、3题。

五、全课小结

分数乘法的教案篇6

教学目标

1.使学生理解、掌握题中的数量关系。根据一个数乘以分数的意义掌握求一个数的几分之几是多少的一步计算的分数乘法应用题的解题方法。

2.渗透事物之间普遍联系的思想,培养学生利用已有知识迁移到新知识的能力。

教学重点和难点

1.使学生能够用线段图正确表达题意,并在此基础上进一步理解题中的数量关系。

2.在搞清数量关系的前提下,根据一个数乘以分数的意义,正确解答求一个数的几分之几是多少的一步分数乘法应用题。

教学过程

(一)复习准备

1.谈话、提问。

我们已经学习了分数乘法的计算方法,这两道题你能否不计算就比较出哪个算式的乘积大?

为什么呢?

分5份后取其中的2份是多少。)

当一个数乘以分数时求的是什么?

(一个数乘以分数就是求这个数的几分之几是多少。)

2.口述下列算式的意义。

求一个数的几分之几是多少怎样列式呢?

3.列式。

(二)学习新课

1.出示例1。

2.分析题意。

(1)读题,找出已知条件和所求问题。

(2)分析已知条件。

①谈话提问:

题中有两个已知条件,其中学校买来100千克白菜是已知学校买来

那么它表示什么呢?请你们以小组为单位通过讨论下面的问题得出结论。

③汇报讨论结果。

均分成5份,吃了的占其中的4份。)

④那么我们应把谁看作单位1?(100千克)

⑤怎样用线段图表示?先画什么?再画什么?求吃了多少千克,是求哪部分?

3.列式解答。

(1)根据刚才的分析,你能用已学过的整数乘除法来解答吗?

10054=80(千克)

1005求的是什么?再乘以4呢?

(2)刚才是用了整数乘除法的解答方法,怎样直接用分数计算呢?

所以把谁看作单位1?(100千克)

根据一个数乘以分数的.意义应怎样列式?

答:吃了80千克。

4.课堂练习。

队的有多少人?

(1)读题,找出已知条件和问题。

(3)请你们以小组为单位进行分析,并画出线段图,解答出来。

(4)反馈。

说一说你们小组的分析思路及解答方法。

是多少。)

5.小结。

刚才我们解答的两道题,都是已知单位1是多少,求它其中的一部分即求它的几分之几是多少。解答这类应用题的关键是什么?

(分析含有分率的句子,找准单位1,再根据一个数乘以分数的意义列式解答。)

6.下面我们来看这样一道题,看看它与上面的题有什么不同?

(1)出示例2。

(2)读题,找出已知条件和问题,并确定从哪儿入手分析。(小强身高

(3)分析、画图。

①你怎样理解这个条件?(把小林身高看作单位1,平均分成8份,小强的身高是这样的7份。)

②这道题中涉及到几个数量?哪几个数量?(小林的身高、小强的身高。)

③为了区别,画图时要用两条线段来表示。先画谁呢?(小林的身高)再画谁呢?(小强的身高)怎样表示?

(4)看图列式。

少。)

②怎样列式解答?

7.改动上题,你能独立分析吗?

米?

(2)画图分析解答。

(3)提问反馈:

①把谁看作单位1?

②小林身高怎样用线段图表示?

③求小林身高就是求什么?

求一个数的几倍,我们也可以理解成求这个数的几分之几是多少。

(三)课堂总结

例1、例2有什么相同点和不同点?

(四)巩固反馈

(画图,解答)

球价格多少元?

3.对比练习:

少元?

(五)布置作业

20页第1~5题。

课堂教学设计说明

本节教案的设计着重让学生掌握分析方法,解题思路。培养学生分析问题的能力。

例1的讲授,通过让学生分析已知条件,以线段图为手段找到题中的数量关系。在明确数量关系的基础上得出,求问题就是在求一个数的几分之几是多少。从而很自然的由旧知识迁移到新知识。

例2的讲授,既要让学生明确两例题的区别,又要让学生统一到都是求一个数的几分之几是多少。为了防止学生出现思维定势,在练习的设计上,通过变换关键句使学生灵活分析解答,易于学生把握解题的关键。

分数乘法的教案篇7

教学内容:课本练习四的第6~10题。

教学目的:

1.使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法应用题。

2.培养分析能力,发展学生思维。

教学重点:正确分析数量关系,找准单位1

教学难点:依题意正确画图教学过程:

一、复习。

1.先说出下列各算式表示的意义,再口算出得数。

2.指出下面每组中的两个量,应把谁看作单位1。

(1)梨的筐数是苹果的。

(2)梨的筐数的和苹果的筐数相等。

(3)白羊只数的等于黑羊的只数。

(4)白羊的只数相当于黑羊的。

3.教师给上面的第2题每个小题补充一个已知条件,再要求学生口头提出问题并解答。

(1)有40筐苹果,梨的筐数是苹果的。()?

(2)梨的筐数是和苹果的筐数相等,有40筐。()?

(3)有40只白羊,白羊的只数的等于黑羊的只数。()?

(4)白羊的只数相当于黑羊的,有40只黑羊。()?

二、新授。

1.出示例3。

小亮的储蓄箱中有18元,小华储蓄的钱是小亮的,小新储蓄的是小华的。小新储蓄了多少元?

(1)指名读题,说也已知条件和问题。

(2)怎样用线段图表示已知条件和问题。

先画一条线段,表示谁储蓄的钱数?为什么?

学生回答后,教师画线段图。

再画一条线段,表示谁储蓄的钱数?画多长?根据什么?学生回答:

根据小华储蓄的钱数是小亮的,把小亮的钱数作为单位1,平均分成6份,再画出与这样的5份同样长的线段。

然后画一条线段表示谁的钱数?画多长?根据什么?引导回答:

根据小新储蓄的钱数是小华的,把小华的钱数作为单位1,平均分成3份,再画出与这样的2份同样长的线段。

教师画:

(2)分析数量关系。

引导学生说出,从已知条件或从问题分析,说出要求小新储蓄的钱数,必须先求小华储蓄的钱数。因此这是一道两步计算的应用题。

(3)确定每一步的算法,列式计算。

①求小华储蓄的钱数怎样想?

引导学生回答:根据小华储蓄的钱数是小亮的

把小亮的钱数看作单位1,就是求18的是多少,所以用乘法计算。列式:

(元)

②求小新储蓄的'钱数怎样想?

引导学生回答:根据小新储蓄的钱数是小华的,把小华的钱数看作单位1,就是求15的是多少,所以也用乘法计算。列式:

(元)

把上面的分上步算式列成综合算式,该怎样列?

(元)

(4)检验,写答语。答:小新储蓄了10元。

2.做一做。

让学生独立完成课本第19页下的做一做,先画线段图表示已知条件和问题,独立解答后,进行订正。指名说一说自己是怎样确定计算方法的。

3.小结。

从上面的分数乘法两步应用题看,与前一节所学的一步应用题有什么相同点和不同点?解答这类应用题的关键是什么?怎样判断计算方法?

学生回答后,教师归纳:今天学的是连续两次求一个数的几分之几是多少的应用题。解答这类应用题的关键是要能正确地判断第一步把谁看作单位1,第二步把谁看作单位1。

三.巩固练习。

完成练习四的第6、7题。

四、全课小结。

这节课我们共同研究了什么?

解答这类分数乘法两步应用题关键是什么?

五、布置作业。

完成练习四的第8~10题。

教学反馈:

分数乘法的教案精选7篇相关文章:

7的组成教案推荐7篇

7的组成教案7篇

难忘的事的读后感精选7篇

值的回忆的作文精选7篇

马的故事的读后感精选7篇

爱国的故事的读后感精选7篇

狼的影子的读后感精选7篇

《我的愿望》的作文精选7篇

姜子牙的故事的读后感精选7篇

树的故事的读后感精选7篇

分数乘法的教案精选7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
152413